Given,
Mass of the object $(m) = 8\;kg$
Radius of the object $(r) = 2\;m$
Speed of the object $(v) = 6\;m/s$
Maximum tension $(T_{max}) = \;?$
Minimum tension $(T_{min}) = \;?$
We have,
$T_{max} = \frac{m\;v^2}{r} + m\;g = \frac{8 \; * \; 6^2}{2} + 8\;*\;10 = 224\;N$
∴ Maximum tension $(T_{max}) = \;224\;N$
$T_{min} = \frac{m\;v^2}{r} - m\;g = \frac{8 \; * \; 6^2}{2} - 8\;*\;10 = 64\;N$
∴ Minimum tension $(T_{min}) = \;64\;N$
Return to Main Menu
Mass of the stone $(m) = 0.2\;kg$
Radius of the circle $(r) = 1\;m$
Minimum Tension in String $(T_{min}) = 3\;N$
Magnitude of the speed $(v) = \;?$
Maximum tension in the string $(T_{max}) = \;?$
We have,
$T_{max} = \frac{m\;v^2}{r} + mg$
$T_{min} = \frac{m\;v^2}{r} - mg$
From equation (ii); we get,
$v^2 = \frac{T_{min}\;*\;r}{m} + m\;g = \frac{3\;*\;1}{0.2} + 0.2\;*\;10 = 25$
⇒ $v = 5\;m/s$
∴ Magnitude of the speed $(v) = \;5\;m/s$
From equation (i), we get,
$T_{max} = \frac{0.2\;*\;5^2}{1} + 0.2\;*\;10 = 7\;N$
∴ Maximum tension in the string $(T_{max}) = \;7\;N$
Return to Main Menu
Mass of the object $(m) = 4\;kg$
Radius of the object $(r) = 1\;m$
Speed of the object $(v) = 3\;m/s$
Maximum tension $(T_{max}) = \;?$
We have,
$T_{max} = \frac{m\;v^2}{r} + m\;g = \frac{4 \; * \; 3^2}{1} + 4\;*\;10 = 76\;N$
Maximum tension $(T_{max}) = \;76\;N$
Return to Main Menu