Given,
Let $W$ be the weight of the crate, and $R$ be the normal reaction, $T$ be the tension and $f_s$ be the frictional force.
Let $\theta = 30^0$ be the angle between $T$ and horizontal. Then,
W = R
In horizontal direction, $F = T\;cos\theta \; - \; F_s$
For constant velocity, $a = 0$
$T\cos\theta = F_s$
$T$ = $\frac{\mu_k\;*\;R}{cos\theta}$ = $\frac{0.4 \;*\; 500}{cos(30^0)}$ = $230.94 \; N$
Return to Main Menu
Given,
Distance (d) = 1.5 N
Horizontal force ($F_H$) = 2.4 N
Frictional Force ($F_C$) = 0.6 N
(i) Work done by the frictional force ($W_f$) = $F_c * d$ = $-0.6 * 1.5$ = $-0.9 \; Joule$
(ii) Work done by the horizontal force ($W_H$) = $F_H * d$ = $2.4 * 1.5$ = $3.6 \; Joule$
Now,
Total work done ($W$) = $W_f$ + $W_H$ = $3.6 - 0.9$ = $2.7 \; Joule$
Given,
Mass of box $(m) = 6\;kg$
(i) Speed of box $(u) = 0.35\;m/s$
Coefficient of kinetic friction $(\mu_k) = 0.12$
Frictional Force $(F) = \;?$
We have,
$\mu_k = $$\frac{F_k}{R}$ ⇒ $F_k = \mu_k\;R = \mu_k\;m.g$
Now,
$F_u = F + F_k$ [∵ for Uniform Motion, $a = 0$]
$F_u = m.a + F_k = \mu_k\;m.g = 0.12\;*\; 6\;*\;10 = 7.2\;N$
(ii) When the box moves with acceleration $0.18\;m/s^2$. Then
$F_u = m.a + m_k\;m/g = 6\;*\;0.18 + 0.12\;*\;6\;*10 = 8.28\;N$
Return to Main Menu
Given,
Mass of wagon $(m) = 7\;kg$
Initial Speed $(u) = 4\;m/s$
Distance $(s) = 3\;m$
Force $(F) = 10\;N$
Final Speed $(v) = \;?$
Acceleration $(a) = \;?$
We have,
$F = ma$ ⇒ $a = $$\frac{10}{7}$ = $1.43\;m/s^2$
Again,
$v^2 = u^2 + 2\;a\;s = 4^2 + 2\;*\;1.43\;*\;4 = 27.44$ ⇒ $v = 5.2\;m/s$
ஃ Final speed is $5.2\;m/s$ & Acceleration is $1.43\;m/s^2$
Return to Main Menu
Given,
Mass of ball $0.05\;kg$
Initial Velocity $(u) = 10\;m/s$
Final Velocity $(v) = (-10\;m/s)$ [Opposite in direction]
No. of striking $(n) = 4$ times
Time taken $(t) = 2\;sec$
Average force on wall $(F) = \;?$
We have,
$F = $$\frac{n(mv-mu)}{t}$ = $\frac{4(10\;*\;0.05 - (-10 \;*\;0.05))}{2}$ = $2\;N$
Return to Main Menu
Given,
Weight of the body $(w = mg = 550\;N)$
Normal Reaction $(R) = 450\;N$
Acceleration $(a) = \;?$
We have,
Here, the weight of the body is greater than the normal reaction, hence the elevator is moving downward with acceleration $(a)$. Then for downward motion,
$F = mg - R = 550 - 450 = 100\;N$
$m = $$\frac{W}{g} = \frac{550}{10}$ $ = 55$
Again,
$F = ma$ ⇒ $a = $$\frac{F}{m}$ = $\frac{100}{55}$ $= 1.8$
ஃ a = $1.8 m/s^2$ in downward motion.
Return to Main Menu
Given,
Power of engine $(P) = 650\;kw = 650000\;W$ Mass of vehicle $m = 1.5 \; * \; 10^5\; kg$ Inclination $Sin\;\theta = \frac{1}{100}$ Speed of vehicle $(v) = 60\;km/hr = $$\frac{60\;*\;1000}{60\;*\;60} = \frac{50}{3}m/s$ Frictional force $(f_r) = \;?$
We have, total upwarding force $F = f_r + mg\;sin\;\theta$ ⇒ $\frac{P}{v}$ $ = f_r + mg\;sin\;\theta$ or, $f_r = \frac{P}{v} - mg\;sin\;\theta$ = $\frac{650000\;*\;3}{50}$ $ - 1.5\;*\;10^5\;*\;10\;*\;$$\frac{1}{100}$ = $24000\;N$ Hence, fractional force between the wheels of the vehicles and the plane is $24000\;N$.
Return to Main Menu
Given;
Case I:
Initial Velocity $(u) = 15 \; m/s$
Distance Covered $(s) = 88 \; m$
Final Velocity $v = 7 \; m/s$
Retardation $(a) = \; ?$
We have,
$v^2 = u^2 + 2 \; a \; s$ ⇒ $a = $$\frac{v^2 - u^2}{2\;.\;s} = \frac{7^2 - 15^2}{2 \;* \;88}$ $= -1\;m/s^2$
Case II:
Initial Velocity $(u) = 7 \; m/s $
Retardation $(a) = -1 \; m/s^2$
Final Velocity $(v) = 0 \; m/s$
Distance Covered $(s) = \; ?$
Again we have,
$v^2 = u^2 + 2\;a\;s$
$s = $$\frac{v^2 - u^2}{2 * (-1)}$ $ = 24.5\;m$
The car brought to be rest at a distance $24.5 \; m$.
Return to Main Menu
Let $m$ be the mass hanged at the other end of the rope.
Tension in the rope $(T) =10\;N$
Now for $4 \; kg$
$F = T = ma$
$a =$$ \frac{T}{m} = \frac{10}{4}$ $ = 2.5\;m/s^2$
For mass $m$
$T = mg -ma$
or, $m(g -a) = T $ ⇒ $ m =$$ \frac{T}{(g - a)} = \frac{10}{10-2.5}$ $ = 1.33 \; kg$
Return to Main Menu