Showing posts with label Mathematics. Show all posts
Showing posts with label Mathematics. Show all posts

Finding Factors by Using Divisibility Rules:


Note: Some of these rules will be more useful to find the Factors.


Characteristic of number
Number divisible by
Example
The last digit is even
2
208
The sum of all digits is divisible by 3
3
114
1+1+4 = 6
The last two digits are divisible by 4
4
288
The last digit is 0 or 5
5
75 or 50
The number is divisible by 2 and 3
6
2,154
Double the last digit, subtract it from the rest of the number. Is your answer divisible by 7?
7
574
4×2 = 8, 57−8 = 49, 49 ÷ 7 = 7

The last three digits are divisible by 8
8
1,888
The sum of the digits is divisible by 9
9
342
The number ends in 0
10
2,060
The number is divisible by both 3 and 4
12
3,024


» Go through each rule and see if it applies.

M10. Dispersion, Skewness Correlation and Regression:

1. List of Formulae of partition values:

I. Individual Series:
1) Mean$(\bar{X})$ = $\frac{\sum X}{n}$;           [∵ n = total numbers of observation]. 
2) Median $(M_d)$ = $\left ( \frac{n+1}{2} \right )^{th}$ items. 
3) Mode = Maximum no of repeation. 
4) $Q_1$ = Value of $\left ( \frac{n+1}{4} \right )^{th}$ items. 
5) $Q_2$ = Value of $\left ( \frac{n+1}{2} \right )^{th}$ items.               [$Q_2 $ = Median] 
6) $Q_3$ = Value of $\left ( \frac{3(n+1)}{4} \right )^{th}$ items. 
7) $D_3$ = Value of $\left ( \frac{3(n+1)}{10} \right )^{th}$ items.           [called $3^{rd}$ decile] 
8) $P_{30}$ = Value of $\left ( \frac{30(n+1)}{100} \right )^{th}$ items.         [called $30^{th}$ percentile]

II. Discrete Series:
1) Mean$(\bar{X})$ = $\frac{\sum fX}{N}$;           [∵ N = $\sum f$ = total frequency]. 
2) Median $(M_d)$ = $\left ( \frac{N+1}{2} \right )^{th}$ items. 
3) Mode = Maximum no of repeation. 
4) $Q_1$ = Value of $\left ( \frac{N+1}{4} \right )^{th}$ items. 
5) $Q_2$ = Value of $\left ( \frac{N+1}{2} \right )^{th}$ items.               [$Q_2 $ = Median] 
6) $Q_3$ = Value of $\left ( \frac{3(N+1)}{4} \right )^{th}$ items. 
7) $D_4$ = Value of $\left ( \frac{4(N+1)}{10} \right )^{th}$ items.           [called $4^{th}$ decile] 
8) $P_{20}$ = Value of $\left ( \frac{20(N+1)}{100} \right )^{th}$ items.         [called $20^{th}$ percentile]

III. Continuous Series:
1) Mean$(\bar{X})$ = $\frac{\sum fX}{N}$;           [∵ N = $\sum f$ = total frequency]. 
2) Median $(M_d)$ = $l + \frac{\frac{N}{2}-c.f}{f}*h$  [∵ Class interval is lies in $\left ( \frac{N}{2} \right )^{th}$. items] 
[∵ $l$ = lower limit of the class; $N$ = total frequency; $f$ = corresponding frequency; $c.f.$ = cumulative frequency preceding the class; $h$ = class size]. 
3) Mode$(M_0)$ = $l+\frac{\Delta_1}{\Delta_1+\Delta_2}*h$   [∵ $\Delta_1$ = $f_1 - f_0$;  $\Delta_2$ = $f_1 - f_2$] 
[∵ $f_1$ = Maximum frequency; $f_0$ = frequency preceding model class; $f_2$ = frequency following model class] 
4) Mode = 3Median - 2Mean. 
5) $Q_1$ = $l + \frac{\frac{N}{4}-c.f}{f}*h$ 
6) $Q_2$ = $l + \frac{\frac{N}{2}-c.f}{f}*h$          [$Q_2 $ = Median] 
7) $Q_3$ = $l + \frac{\frac{3N}{2}-c.f}{f}*h$ 
8) $D_8$ = $l + \frac{\frac{8N}{10}-c.f}{f}*h$

2. Method of Measuring Dispersion:
I. - Range = $L$ - $S$;  [∵ Largest item - Smallest item]. 
    - Coefficient of Range = $\frac{L-S}{L+S}$ 
II. - Semi interquartile (Quartile Deviation) = $\frac{Q_3 - Q_1}{2}$ 
     - Coefficient  of  Q. D. = $\frac{Q_3 - Q_1}{Q_3 + Q_1}$
III. Mean Deviation (M. D.)/Average Deviation:
1) M. D. from Mean = $\frac{\sum \left | X-\bar{X} \right |}{n}$          [for Discrete] 
                                  = $\frac{\sum f\left | X-\bar{X} \right |}{N}$        [for Continuous] 
2) M. D. from Median = $\frac{\sum \left | X-M_d \right |}{n}$      [for Discrete] 
                                     = $\frac{\sum f\left | X-M_d \right |}{N}$    [for Continuous] 
          3) Coefficient of M.D. from Mean = $\frac{M.D\;from\;Mean}{Mean}$  
4) Coefficient of M.D. from Median = $\frac{M.D\;from\;Median}{Median}$

IV. Standard Deviation (S.D.):
1) Standard Deviation $(\sigma)$ = $\sqrt{\frac{\sum(X-\bar{X})^2}{n}} = \sqrt{\frac{\sum X^2}{n}-\left (\frac{\sum X}{n}\right )^2}$   [for Discrete] 
2)  Standard Deviation $(\sigma)$ = $\sqrt{\frac{\sum f(X-\bar{X})^2}{N}} = \sqrt{\frac{\sum fX^2}{N}-\left (\frac{\sum fX}{N}\right )^2}$   [for Continuous] 
3) Variance $(\sigma)^2$ = $\frac{\sum f(X-\bar{X})^2}{N}$ = $\frac{\sum fX^2}{N}-\left (\frac{\sum fX}{N}\right )^2$  
4) Coefficient of S.D. = $\frac{S.D.}{Mean}$ = $\frac{\sigma}{\bar{X}}$ 
5) Coefficient of Variation  =  $\frac{S.D.}{Mean}$ * 100   =  $\frac{\sigma}{\bar{X}} * 100$

3. Skewness:
(Measure of central tendency gives the information about the concentration of the items around the central value). 
I. Measures of Skewness:
1) Karl Pearson's coefficient of Skewness $(S_k(P))$ = $\frac{Mean\; -\;Mode}{Std.\; Deviation}$ = $\frac{\bar{X}-M_0}{\sigma}$ 
(It is also called Pearsonial coefficient of Skewness). 
2)  $S_k(P)$ = $\frac{3(Mean\; -\;Median)}{Std.\; Deviation}$ = $\frac{3(\bar{X}-M_d)}{\sigma}$ 
[∵ Mean - Mode = 3(Mean - Median)]

4. Correlation:
1) Karl Pearson's correlation Coefficient (r) = $\frac{Cov(X,Y)}{\sqrt{Var(x)}.\sqrt{Var(Y)}}$ 
                                                                       = $\frac{\Sigma(X-\bar{X}).(Y-\bar{Y})}{\sqrt{\Sigma(X-\bar{X})^2}.\sqrt{\Sigma(Y-\bar{Y})^2}}$ 
                                                                       = $\frac{\Sigma{xy}}{\sqrt{\Sigma x^2} .\sqrt{\Sigma y^2}}$ 
[∵ Where $x = X - \bar{X}$ and $y = Y - \bar{Y}$]
2) Karl Pearson's correlation Coefficient (r) = $\frac{n\Sigma{XY}-\Sigma{X} .\Sigma{Y}}{\sqrt{n \Sigma{X^2}- (\Sigma{X})^2}\sqrt{n \Sigma{Y^2}- (\Sigma{Y})^2}}$

5. Regression:
The regression is a mathematical measure of the average relationship between two or more variables in terms of the original data.
Graph: Regression Line - y on x
Line of Regression: In scatter diagram, we find the point of cluster around a curve called regression curve.
If a curve is a st. line it is called the regression line. 
The regression line can be expressed by two different algebraic equation, such as follows: 
i) Regression equation of $y$ on $x$ is $y = a + bx$; where b is known as regression coefficient $(b_{yx})$ of $y$ on $x$. 
ii) Regression equation of $x$ on $y$ is $x = a + by$; where b is known as regression coefficient $(b_{xy})$ of $x$ on $y$. 
1) Correlation Coefficient between the two variables $x$ and $y$ is; 
$r = \sqrt{b_{yx}.b_{xy}}$ ................................ (i)
2) Regression equation of $y$ on $x$: 
$y - \bar{y} = b_{yx}.(x - \bar{x})$ .................................... (ii)  
[Note: Let the regression equation of $y$ on $x$ be, 
$y = a + bx$                                   (i)
⇒ $\Sigma{y} = na + b\Sigma{x}$
⇒ $\frac{y}{n} = a + b\frac{\Sigma{x}}{n}$
⇒ $\bar{y} = a + b\bar{x} $           (ii) 
Subtracting (ii) from (i); 
⇒ $y - \bar{y} = b_{yx}(x - \bar{x})$             (iii) 
This equation (iii) is the regression equation of $y$ on $x$. ]
3) Regression coefficient $(b_{yx})$ of $y$ on $x$ is, 
$b_{yx} = \frac{n\Sigma{xy} - \Sigma{x}.\Sigma{y}}{n\Sigma{x^2} - (\Sigma{x})^2}$ .................................... (iii)
4) Regression equation of $x$ on $y$: 
$x - \bar{x} = b_{xy}.(y - \bar{y})$ .................................... (iv)
5) Regression coefficient $(b_{xy})$ of $x$ on $y$ is, 
$b_{xy} = \frac{n\Sigma{xy} - \Sigma{x}.\Sigma{y}}{n\Sigma{y^2} - (\Sigma{y})^2}$ .................................. (v)
Return to Main Menu

A Map of Everything know about Mathematics | Mathematics

The laws of Nature are written in the language of mathematics....
If you want to learn about nature, to appreciate nature, it is necessary to understand the language that she speaks in.  ~ Richard P. Feynman
Source: Dominic Walliman (Youtube)
Mathematics is one of the most fascinating languages humanity has ever devised, but without university - level expertise, we're going to have a very bad time trying to figure out how things like chaos theory and fractal geometry tie in with machine learning and all those crazy prime numbers we keep finding. [1]
The entire field of mathematics summarized in a single map. This shows how pure mathematics and applied mathematics relate to each other and all of the sub - topics they are made from. Let's enjoy with a video, what's the map of mathematics is?

Click here: for the map of PHYSICS