Return to Main Menu
"Never stop Thinking, Never stop Questioning; Never stop Growing. To be realize that everything connects to everything else!! - spl BiNal.
Showing posts with label Physical Quantities. Show all posts
Showing posts with label Physical Quantities. Show all posts
Physical Properties | Assignment Collection
1) Find the dimension formula of,
Density / Pressure / Work / Energy / Power / Gravitational Constant / Momentum ?
2) To find the time period of a simple pendulum, its time period (t) may depend upon (i) mass (m) of the pendulum (ii) the length (l) and (iii) acceleration due to gravity (g).
3) Convert 1 dyne into Newton.
4) Convert 500 erg into Joule.
$(P + \frac{a}{V^2}) (V - b) = RT$.
Where, $P$ = Pressure, $V$ = Volume, $R$ = Universal gas constant, $T$ = Absolute Temperature.
6) Is dimensionally correct equation necessarily physically correct? What about the dimensionally wrong equation?
7) A student writes $\sqrt{(\frac{R}{2 \; G\; M}})$ for escape velocity. Check the correctness of the formula by using dimensional analysis.
8) Find the dimensions of Planck’s constant (h) from the given equation: $\lambda = \frac{h}{p}$; where λ is wavelength and p is the momentum of photon.
9) Convert density of water 1 $g/cm^3$ (CGS-system) into $kg/m^3$ (MKS – system).
10) Check the correctness of the relation $h = \frac{2 \; T \; Cos \theta}{r\; \rho\; g}$, Where symbols have usual meaning.
Return to Main Menu
Labels:
Assignment,
Physical Quantities,
Physics Note
E1.1 Dimension of Physical quantity:
The dimension of a physical quantity is defined as the powers to be raised on fundamental units of length (L), Mass (M), & Time (T) to give the unit of that physical quantity. For example:
$Velocity = \frac{Displacement}{Time} = m/s = \frac{ [L]}{ [T]} = [L][T^{-1}] = [M^0 L^1 T^{-1}]$
Dimensional Formula:
It is a relation that shows how & which fundamental quantities are involved into a physical quantities. For Example:
Dimensional Formula of force is [$MLT^{-2}$]; Dimensional Formula of acceleration is [$LT^{-2}$]
Dimensional equation:
An equation containing physical quantities with dimensional formula is known as dimensional equation.
Or, the dimensional formula of a physical quantity expressed in the form of an equation is called dimensional equation of that quantity. For example:
Dimensional equation of v = u + at is,
$[M^0 L^1 T^{-1}] = [M^0 L^1 T^{-1}] + [M^0 L^1 T^{-2}] [M^0 L^0 T^1] = [M^0 L^1 T^{-1}]$
The following table shows the dimensional formulas of some Physical Quantities:
S. No Physical Quantities Formula Dimensional Formula SI Unit 1 Area $l * b$ $[L]*[L] = [M^0\,L^2\,T^0]$ $m^2$ 2 Volume $l*b*h$ $[L]*[L]*[L] = [M^0\,L^3\,T^0]$ $m^3$ 3 Speed or Velocity $\frac{distance}{time}$ $\frac{[L]}{[T]} = [M^0\,L^1\,T^{-1}]$ $m/s$ 4 Density $\frac{mass}{volume}$ $\frac{[M]}{[L^3]}= [M^1\,L^{-3}\,T^0]$ $Kg/m^3$ 5 Acceleration $\frac{velocity}{time}$ $\frac{[L\,T^{-1}]}{[T]}= [M^0\,L^{1}\,T^{-2}]$ $m/s^{-2}$ 6 Frequency $\frac{no\;of\;vibrations}{time}$ $[M^0\,L^{0}\,T^{-1}]$ $hertz$ 7 Momentum
(P = MV) $mass * velocity$ $[M]*[L\;T^{-1}] = [M^1\,L^1\,T^{-1}]$ $kg\,m\,s^{-1}$ 8 Force $mass * acceleration$ $[M]*[L\,T^{-2}] = [M\,L\,T^{-2}]$ N (Newton) 9 Impulse force * time [M\,L\,T^{-2}] * [T] = [M\,L\,T^{-1}] N s 10 Surface Tension $\frac{force}{length}$ $\frac{[M\,L\,T^{-2}]}{[L]} = [M\,L^0\,T^{-2}] $ $N\,m^{-1}$ 11 Pressure $\frac{force}{area}$ $\frac{[M\,L\,T^{-2}]}{[L^2]}$ $N\,m^{-2}$ or Pa 12 Coefficient of Viscosity $\frac{force}{area * velocity\;gradient}$ $[M\,L^{-1}\,T^{-1}]$ da P (decapoise) 13 Work force * distance $[M\,L\,T^{-2}]*[L] = [M\,L^2\,T^{-2}]$ J (Joule) 14 Energy work = force * distance $[M\,L\,T^{-2}]*[L] = [M\,L^2\,T^{-2}]$ J (Joule) 15 Power $\frac{Work}{time}$ $\frac{[M\,L^2\,T^{-2}]}{[T]} = [M\,L^2\,T^{-3}]$ W (Watt) 16 Gravitational Constant (G) $\frac{force\, *\, (distance)^2}{{mass}^2}$ $[M\,L^3\,T^{-2}]$ $N\,m^2\,kg^{-2}$ 17 Gravitational Field Strength $\frac{force}{mass}$ $[M\,L^1\,T^{-2}]$ $N\, kg^{-1}$ 18 Gravitational Potential $\frac{work}{mass}$ $[M^0\,L^2\,T^{-2}]$ $J\, kg^{-1}$ 19 Force Constant (K) $\frac{F}{L}$ $[M\,L^0\,T^{-2}]$ $N\, m^{-1}$ 20 Angle $\frac{arc}{radius}$ Dimensionless rad 21 Moment of Inertia $Mass * (distance)^2$ $[M\,L^2\,T^0]$ $Kg\,m^2$ 22 Angular Momentum Moment of inertia * angular velocity $[M\,L^2]*[T^{-1}]=[M\,L^2\,T^{-1}]$ $kg\,m^2\,s^{-1}$ 23 Torque or Couple Force * perpendicular distance $[M\,L\,T^{-2}]*[L] = [M\,L^2\,T^{-2}]$ N m 24 Kinetic Energy $\frac{1}{2}mv^2$ $[M\,L^2\,T^{-2}]$ J (Joule) 25 Potential Energy $mgh$ $[M\,L^2\,T^{-2}]$ J (Joule) 26 Stress $\frac{force}{area}$ $[M\,L^{-1}\,T^{-2}]$ $N\,m^{-2}$ or Pa 27 Strain $\frac{change\;in\;length}{original\;length}$ $[M^0\,L^{0}\,T^{0}]$ No unit 28 Modulus of Elasticity $\frac{stress}{strain}$ $[M\,L^{-1}\,T^{-2}]$ $N\,m^{-2}$ or Pa 29 Angular Displacement $\frac{arc}{radius}$ $[M^0\,L^{0}\,T^{0}]$ No unit 30 Angular Velocity ($\omega$) $\frac{angular\;displacement}{time}$ $[M^0\,L^{0}\,T^{-1}]$ $rad/sec$ 31 Angular Acceleration $\frac{change\;in\;angular\;velocity}{time}$ $[M^0\,L^{0}\,T^{-2}]$ $rad/sec^{-2}$ 32 Angular Momentum $I \omega$ $[M^\,L^{2}\,T^{-1}]$ $kg\,m^2\,sec^{-1}$ 33 Angular Impulse $I \omega$ $[M^\,L^{2}\,T^{-1}]$ $kg\,m^2\,sec^{-1}$
Click here for more.
Return to Main Menu
Subscribe to:
Posts (Atom)