Showing posts with label Gravitation. Show all posts
Showing posts with label Gravitation. Show all posts

The period of the moon revolving under the gravitational force of the earth is $27.3$ days. Find the distance of the moon from the center of the earth if the mass of the earth is $5.97 \;*\;10^{24}kg$.


Given,
Time $(T) = 27.3$ days = $27.3 \; * \; 24 \; * \; 60 \; * \; 60  = 2358720 \; Sec$
Mass of earth $(M) = 5.97 \; *\; 10^{24}\; kg$
Height of the Moon from the center of the earth $(h) = \;?$

We know that,
$h = $ $\left ( \frac{T^2 \; * \; R^2\; * \;g}{4\; \pi^2} \right )^{1/3}$ $ - \;R$
$h =$ $ \left ( \frac{(2358720)^2 \; * \; {6400000}^2\; * \; 9.8}{4\; \pi^2} \right )^{1/3}$ $ - \; 6400000 = 3.77 * 10^8 \; m$

∴ Height of the Moon from the center of the earth $(h) = \;3.77 * 10^8 \; m$

Return to Main Menu 

Calculate the points along a line joining the centers of earth and moon where there is no gravitational force. ($M_e = 6 * 10^{24}\;kg, M_m = 7.4 * 10^{22}\;kg, d = 3.8 * 10^8\;m$).

Given, (need figure)

Mass of the earth $(M_e) = 6 * 10^{24}\;kg$
Mass of the Moon $(M_m) = 7.4 * 10^{22}\;kg$
Distance between centers of earth and the moon $(d) = 3.8 * 10^8\;m$

Let $P$ be the point at which gravitational force between earth and the moon is zero, then

$\frac{G\;*\;M_e\;*\;1}{x^2} = \frac{G\;*\;M_m\;*\;1}{(d-x)^2}$
$\frac{6\;*\;10^{24}}{x^2} = \frac{7.4\;*\;10^{22}}{(d\;-\;x)^2}$
$\frac{600}{x^2} = \frac{7.4}{(d-x)^2}$

$\left ( \frac{24.5}{x} \right )^2 = \left ( \frac{2.72}{d-x} \right )^2$
$\frac{24.5}{x} = \frac{2.72}{(d-x)}$
$27.22\;*\;x = 24.5\;*\;d$
$x = \frac{24.5\;*\;3.8\;*\;10^8}{27.22} = 3.42\;*\;10^8\;m$

∴ The distance from the earth center is $3.42\;*\;10^8\;m$

Return to Main Menu


An earth satellite moves in a circular orbit with a speed of $6.2\;km/s$. Find the time of one revolution and its centripetal acceleration.

Given,

Orbital velocity $v_o = 6.2\;km/s = 6200\;m/s$
Radius of earth $(R) = 6400000\;m$
Time Period $(T) = \; ?$
Centripetal Acceleration $(a) = \;?$

We have,
$ v_{0} = R \sqrt { \frac{g}{R+h}} $
or, $6200 = 6400000\;*\; \sqrt{\frac{10}{6400000 \; + \; h}}$
or, $9.38 \; *\; 10^{-7} = \sqrt{\frac{10}{6400000 + h}}$
or, $h = 10655301 - 6400000$
h = $4255301\;m$

Now, 
$T = 2 \pi \; \sqrt{\frac{(R + h)^3}{g * R^2}}$
or, $2\pi \; \sqrt{\frac{(4255301 + 6400000)^3}{10 * 6400000}}$
or, $2 \; \pi \;*\;1718.57 = 10792.65\;Sec = 2.99\;hrs$
∴ Time of revolution = $2.99\;hrs$

Again,
Centripetal Acceleration $a = \frac{v_0^2}{h + R} = \frac{(6200)^2}{4255301 + 6400000} = 3.6\;m/s^2$
∴ Centripetal Acceleration = $3.6\;m/s^2$

Return to Main Menu 

What is the period of revolution of a satellite of mass m that orbits the earth in a circular path of radius $7880 \; km$ about $1500 \; km$ above the surface of the earth?

Given,

Radius of the orbit $(r) = 7880\;km = 7880\; * \;10^3\;m$
Height $(h) = 1500\;km = 1500\;*\;10^3\;m$
Period of revolution $(T) = \;?$
Radius of earth $(R) = r - h = (7880 - 1500)\; * \; 6380\;*\;10^3\;m$
We have,

$T = 2 \pi \; * \; \sqrt{ \frac{(R\;+\;h)^{3}}{(g\;*\;R)^2}}$
or, $ T = 2 \pi \; * \; \sqrt{ \frac{(6380000\;+\;1500000)^3}{9.8\;*\;(6380000)^2}} = 6955.29\;Sec = 1.91\; hrs$
∴ The time period of the revolution = $1.91\;hrs$.
Return to Main menu

Taking the earth to be the uniform sphere of radius $6400 \; km$, calculate the total energy needed to raise a satellite of mass $1000 \; kg$ to a height of $600 \; km$ above the ground and to set it into a circular orbit at that altitude.


Given;
Radius of earth (R) = 6400 km = 6400000 m
Mass of satellite (m) = 1000 kg
Height of satellite (h) = 600 km = 600000 m
Total Energy needed (E) = ?

Energy needed = Increase in Potential Energy + Kinetic Energy at Orbit
= $-$$\frac{G\;M\;m}{r}$$\;-\;$$\frac{-\;G\;M\;m}{R}$$\;+\;$$\frac{1}{2}$$mv^2$
= $-$$\frac{G\;M\;m}{r}$$\;-\;$$\frac{-\;G\;M\;m}{R}$$\;+\;$$\frac{1}{2}$$m$$ \frac{G\;M}{r}$                               [∵ r = R+h]

= $g\;R^2\;m[$$\frac{1}{R}$$\;-\;$$ \frac{1}{2(R+h)}$$]$     =     $g\;m[R\;-\;$$\frac{R^2}{2(R+h)}$$]$
= $1000\;*\;10\;[6400000 \;-\; $$\frac{(6400000)^2}{2(6400000 \;+\; 600000)}]$
= $3.47\;*\;10^{10}\;J$

∴ The total Energy needed (E) = $3.47\;*\;10^{10}\;J$

Return To Main Menu