Given,
Mass of electron $(m_e) = 9.1 * 10^{-31}\;kg$
Charge of Electron $(q) = 1.6 * 10^{-19}\; C$
Electric Field Intensity $(E) = 1.2 * 10^{4}\; V/m$
Distance $(d) = 1 \; cm = 1 * 10^{-2} \; m $
Time $(t) = \;?$
We know that,
$F$ = $q.E$ ⇒ $m.a$ = $q.E$ ⇒ $a$ = $\frac{q.E}{m}$ = $\frac{(1.6 \; * \; 10^{-19})\;*\; (1.2\;*\;10^{4})}{9.1 \; * \;10^{-31}}$
∴ $a = 2.1 \; *\; 10^{15}\; m/s^2$
Now,
To calculate the time, we have
$S = ut + \frac{1}{2}at^2$ ⇒ $S = \frac{1}{2}at^2$ [∵ u = 0]
⇒ $t^2$ = $\frac{2.S}{a}$ = $\frac{2 \;*\; 1 \;* \; 10^{-2}}{2.1 * 10^{15}}$
∴ $t = 3.08 * 10^{-9} Sec $
Hence, it takes $3.08*10^{-9}\;$sec to travel 1 cm from rest.
Return to Main Menu