Given,
Weight of the car $(W) =1200 \; N$
Coefficient of friction $(\mu) = 0.015$
Velocity $(v) = 72\;km/hr = 20\;m/s$
Horizontal force $(F) = ?$
Power developed by the engine $(P) = ?$
Now we have,
$F = F_k + ma$ [Here, $F_k = \mu_r\;.\;mg$ = frictional force]
If the speed is uniform, then a = 0,
$F = \mu_r\;.\;mg = 0.015 * 1200 = 18\;N$
Therefore, horizontal force needed $(F) = 18\;N$
Also, Power developed by the engine $(P) = F * v$
$= 18 * 20 = 360\;N$
Let $m$ be the mass hanged at the other end of the rope.
Tension in the rope $(T) =10\;N$
Now for $4 \; kg$
$F = T = ma$
$a =$$ \frac{T}{m} = \frac{10}{4}$$ = 2.5\;m/s^2$
For mass $m$
$T = mg -ma$
or, $m(g -a) = T $ ⇒ $ m =$$ \frac{T}{(g - a)} = \frac{10}{10-2.5}$$ = 1.33 \; kg$
Return to Main Menu