Return to Main Menu
"Never stop Thinking, Never stop Questioning; Never stop Growing. To be realize that everything connects to everything else!! - spl BiNal.
Return to Main Menu
Emf $(E) = 2\;V$
Resistance of Potentiometer wire $(R) = 3\; \Omega$
Potential Difference $(V) = 1.5 \; mV = 1.5 * 10^{-3}\;V$
Let, $R'$ be the resistance to be connected in series.
$\therefore$ Total resistance of the circuit $(R_T) = R' + 3$
Here, current across the potentiometer circuit $(I) = \frac{E}{R_T} = \frac{2}{R'\; + \; 3}$
Also, we have, p.d. across potentiometer wire $ = IR$
or, $1.5 * 10^{-3} = \frac{2}{R' \; + \; 3} * 3$
or, $R' + 3 = 4000$
$\therefore$ $ R' = 3997 \; \Omega$
Hence resistance needed in series $= 3997 \; \Omega$
Return to Main Menu
Let $E_1$ be the emf of a cell A
Balancing length for $A \; (l_1) = 75\;cm$
Emf of standard cell $(E_2) = 1.02\;V$
Balancing length for $E_2 \; (l_2) = 50\;cm $
We know,
$\frac{E_1}{E_2} = \frac{l_1}{l_2}$
$E_1 = \frac{75}{50} * 1.53\;V$
Hence, emf of the cell A is $11.53\;V$
Return to Main Menu
$V = 2\;V$
$R_{AB} = 3 \; \Omega$
Let $R$ be the resistance needed in the series, the the potential difference across $AB = 5\;mV = 5 * 10^{-3}\;V$
i.e. $I\;R_{AB} = 5\;mV$
or, $\frac{V}{R_{AB} + R} * R_{AB} = 5 * 10^{-3}$
or, $\frac{2}{3 \; + \; R} * 3 = 5 * 10^{-3}$
By Solving, we get
$R = 1197 \Omega$
Again,
$l_1 = 100 \; cm $
$V_1 = 5\; mV $
$l_2 = 60 \; cm$
$V_2 = ?$
We have,
$\frac{V_1}{V_2} = \frac{l_1}{l_2}$
Applying Kirchhoff's current law at point $'B'$.
$I_3 = I_1 + I_2$ .......... (i)
Now, Applying Kirchhoff's voltage law in close loop ABEFA
$35 = I_1 * 3 + I_3 * 2$
$35 = 3 \; I_1 + 2 * (I_1 + I_2)$
or, $3\;I_1 + 2 \; I_2 + 2 \; I_2 = 35$
or, $5\; I_1 + 2 \; I_2 = 35$ ......... (ii)
Again, Applying Kirchhoff's Voltage law in close loop CBEDC,
$40 = I_2 * 4 + I_3 * 2$
or, $40 = I_2 * 4 + I_3 * 2$
or, $40 = 4\; I_2 + 2 (I_1 + I_2)$
or, $2\; I_1 + 6 \; I_2 = 40$ .......... (iii)
Solving equation (ii) and (iii) we get,
$I_1 = 5\;A$ and $I_2 = 5\; A$
So current through $2 \;\Omega = I_3 = I_1 + I_2 = 5 + 5 = 10 \; A$
Return to Main Menu
The length of the potentiometer $(L) = 10\;m$
Potential gradient $(K) = 0.0015\; V/cm = 0.15 \; V/m$
a) Distance of null point $(l_1) = ?$
Voltage of the cell $(V) = 1.018 \; V$
From the principle of the potentiometer, We have,
$V \propto l$
or, $V = k\;l_1$
or, $1.018 = 0.15 * l_1$
or, $l_1 = 6.8 \; m$
b) Potential Difference $(V) = ?$
Length of null point $(l_2) = 940 \; cm = 9.4 \; m$
Again from the principle of the potentiometer,
$V \propto l_2$
or, $V = k * l_2 = 0.15 * 9.4 = 1.41\;V$
c) Maximum P.d. $(V_{max}) = ?$
$V_{max} = k * L = 0.15 * 10 = 1.5 \; V$
Return to Main Menu
Length of wire $AB$ $(l_{AB}) = 1\;m$
Resistannce of wire $(R) = 2.4 \; \Omega$
EMF of cell $(E_1) = 4\; V$
Resistance across $AB$ $(R_{AB}) = 2 \; \Omega$
Length of $AC$ $(l_{AC}) = ?$
For zero galvanometer deflection,
P.D. across $AC = 1.5 \; V$
And, $V = I * R_{AC}$
or, $1.5 = \frac{4}{2.4 \; + \; 2} * R_{AC}$
$R_{AC} = \frac{1.5 \; * \; 4.4}{4}$ $= 1.65 \; \Omega$
Since, $2 \; \Omega$ wire $AB$ has length $1\;m$
$1 \; \Omega$ wire has length $\frac{1}{2}\;m$
$\therefore$ $1.65 \Omega$ wire $AB$ has length $\frac{1}{2} * 1.65 = 0.825 \; m$
$\therefore$ Length of $AC = 0.825 \; m.$
Return to Main Menu
Given,
Length of potentiometer wire $(l) = 10\;m$
Resistance of potentiometer $(R_p) = 20\; Ω$
Potential of battery $(V_b) = 3V$
Resistance of battery $(R_b) = 10 \; Ω$
Potential Gradient $(\frac{V}{l}) = \;?$
Let $I$ be the current flowing through the circuit.
Then, from Ohm's law,
$V_b = IR$ [where R= Total resistance of the circuit = $R_b + R_p$
or, $3 = I\;*\;(10+20)$
⇒ I = 0.1 A
Since the combination is in series, the current (I) all over the circuit is same.
So, p.d in AB $(V_{AB})$ = I * $R_{b}$ = 0.1 * 20 = 2 V
Now, Potential Gradient $(\frac{V}{l}) = \frac{2}{10}$ = 0.2V/m
Hence, the potential gradient along the wire is 0.2 V/m.
Return to Main Menu