Showing posts with label Equation of Motion in Straight Line. Show all posts
Showing posts with label Equation of Motion in Straight Line. Show all posts

E1.3 Kinematics (Equation of Motion in Straight Line):

For an object moving in a straight line, displacement, velocity, acceleration and time are taken are related by simple equation called Kinematical Equations (or equations of motion in straight line).
I. Analytical Treatment: 
a) Distance covered with Uniform Velocity:                                              $s$ = $ut$ 
b) Velocity of a Uniformly accelerated body after time (t):                       $v$ = $u$ + $at$ 
c) Distance covered by a uniformly accelerated body in time (t):     $s$ = $ut + 1/2at^2$ 
d) Velocity of Uniformly accelerated body after covering a distance (S):  $v^2$ - $u^2$ = $2as$ 
e) Distance traveled in $n^{th}$ second:                          $s_{n^{(th)}}$ = $u + 1/2 a(2n - 1)$

II. Graphical Treatment:
a) v = u + at 
Acceleration = slope of the velocity-time graph AB 
∴ a = $\frac {BM}{AM}$ = $\frac {BM}{ON}$ = $\frac {BN - MN}{ON}$ = $\frac {v - u}{t}$ 
or, $v - u = at$ 
$v = u + at$     .................... (i)

b) $s = ut + \frac{1}{2}at^2$
Acceleration = slope of the velocity-time graph AB 
∴ a = $\frac{BM}{AM}$ = $\frac{BM}{t}$; ⇒ $BM$ = $at$ 
Now, distance traveled by object in time t, 
s = area of trapezium OABN = area of rectangle OAMN + area of triangle ABM 
   = OA * ON + $\frac{1}{2}OB$ * AM = ut + $\frac{1}{2}at$ * t = ut + $\frac{1}{2}at^2$ 
Therefore, s = ut + $\frac{1}{2}at^2$            .............. (ii)

c) $v^2$ = $u^2$ + 2as 
From the velocity - time graph: 
s = area OABN 
= $\frac{1}{2}(OA + NB).AM$ 
= $\frac{1}{2}(OA + NB). \frac{AM}{BM}.BM$ 
= $\frac{1}{2}(u + v). \frac{1}{BM/AM}.(BN - MN)$ 
= $\frac{1}{2}(u + v)\frac{1}{a}(v - u)$ 
= $\frac{v^2 - u^2}{2a}$ 
∴ $v^2 - u^2 = 2as$        .......................... (iii)

Return to Main Menu