Given, (need figure)
Three equal charge ($q_1 = q_2 = q_3 = 4 * 10^{-7}\;C)$
Distance $(AB) = 8\;cm = 0.08\;m$
Distance $(BC) = 6\;cm = 0.06 \;m$
Distance $(AC) = 10\;cm = 0.1\;m$
Angle $ፈ ABC = 90 ^{\circ}$
Force $(F) = ?$
$F_{AB} = $$\frac{1}{4 \pi \epsilon_0}\frac{q_1\;*\;q_2}{R^2}$ $ = 9 * 10^9 \;*\; $$\frac{(0.4 \;*\; 10^{-6})^2}{(0.08)^2}$ $ = 0.225\;N$
$F_{BC} = $$\frac{1}{4 \pi \epsilon_0}\frac{q_1\;*\;q_2}{R^2}$ $ = 9 * 10^9 \;*\; $$\frac{(0.4 \;*\; 10^{-6})^2}{(0.06)^2}$ $ = 0.40\;N$
Force exerted on the charge located at $90 ^{\circ}$ is,
$F = \sqrt{(F_{AB})^2 + (F_{BC})^2 + 2\;F_{AB}\;F_{BC}\;Cos\theta}$
$F = \sqrt{(0.225)^2 + (0.4)^2 + 2\;*\;0.225\;*\;0.4\;*\;Cos\;90}$
⇒ $F = 0.46\;N$
Given,
Radius of the charged sphere $(R) = 1 \; cm = 0.01\;m$ Charge $(q) = 2\; C$ Electric field intensity $(E) = ?$
i) At the center of the sphere, $E = 0$; Because charge enclosed by Gaussian surface is zero. ii) At the surface of the sphere, $E = $$\frac{1}{4 \pi \epsilon_0} \frac{q}{R^2}$ $ \;=\; 9 \;*\; 10^9 \;*\; $$\frac{2}{(0.01)}$ $ = 1.8 * 10^{12}\;N/C$
iii) At $2\;cm$ from the center, i.e. $r = 2 = 2\;cm = 0.02\;m$ $E = $$\frac{1}{4 \pi \epsilon_0} \frac{q}{r^2}$ $ = 9 * 10^9 \;*\; $$\frac{2}{(0.02)}$ $ = 9 \;*\; 10^{11}\; N/C$
Return to Main menu
Given,
Radius of the charged sphere $(R) = 12 \; cm$
Charge $(q) = 6 * 10^{-6}\; C$
Electric field intensity $(E) = ?$
i) On the surface
$E = $$\frac{1}{4 \pi \epsilon_0} \frac{q}{R^2}$ $ \;=\; 9 \;*\; 10^9 \;*\; $$\frac{6 \;*\; 10^{-6}}{(0.12)^2}$ $ = 3.75 * 10^{6}\;N/C$
ii) Inside the sphere,
$E = 0$; Because charge enclosed by Gaussian surface is zero.
iii) Outside the sphere at distance $15 \;cm$
i.e. $r = 12 + 15 = 27\;cm = 0.27\;m$
$E = $$\frac{1}{4 \pi \epsilon_0} \frac{q}{r^2}$ $ = 9 * 10^9 \;*\; $$\frac{6 \;*\; 10^6}{(0.27)^2}$ $ = 7.41 \;*\; 10^5\; N/C$
Return to Main menu
Given,
Area of the plates $(A) = 500 \; cm^2 = 500 * 10^{-4}\;m^2$
Distance $(d) = 2\;mm = 2 * 10^{-3}\;m$
charge $(q) = 0.05\;\mu C = 0.05 * 10^{-6}\;C$
Electric field intensity $(E) = \;?$
Electric Potential $(V) = \;?$
We have,
$E = $$\frac{\sigma}{\epsilon_0} = \frac{q}{\epsilon_0\;A} = \frac{0.05\; *\; 10^{-6}}{8.85 \;*\; 10^{-12} \;*\; 500 \;*\; 10^{-4}}$
$= 112.9 * 10^3\; V/m$
And
$V = E \;*\; d$
$ = 112.9 * 10^3 * 2 * 10^{-3} = 226\;V $
Return to Main Menu
Given,
Mass of electron $(m_e) = 9.1 \;* \;10^{-31}\;kg$
Charge of electron $(e) = 1.6 * 10^{-19}$
Electric field intensity $(E) = 1.2 * 10^4\;V/m$
Distance covered $(s) = 1\;cm = 100^{-2}\;m$
Time taken (t) = ?
We have,
$F = eE$
or, ma = eE
or, $a = $$\frac{eE}{m} = \frac{1.6 * 10^{-19} \;*\; 1.2 \;*\; 10^4}{9.1 \;*\; 10^{-31}}$ $ = 2.1 * 10^{15}\;m/s^2$
Now we have to calculate,
$S = ut \;+\; $$\frac{1}{2}$ $at^2$
$S = 0 \;+\; $$\frac{1}{2}$ $at^2$ [∵ $u = 0 \; m/s$]
$0.01 = $$\frac{1}{2}$ $ \;*\; 2.1 \;*\; 10^{15} \;*\; t^2$
⇒ $t = 3.1 \;*\; 10^{-9}\;Sec $
Given,
Mass of the alpha particle = $6.68\;*\;10^{-27}\;kg$
Charge of the alpha particle = $3.2 * 10^{-19}\;C$
We have,
Electrostatic Force $(E_f) = $$\frac{1}{4\pi \epsilon_0} \frac{q_1\;q_2}{R^2}$
Electrostatic Force $(E_f) = 9*10^9 * $$\frac{q^2}{R^2}$ = $9*10^9 * $$\frac{(3.2 * 10^{-19})^2}{R^2}$ ......... (i)
Gravitational force $(G_f) = G $$\frac{M_1\;M_2}{R^2}$
Gravitational force $(G_f) = 6.67\;*\;10^{-11} $$\frac{(6.68*10^{-27})^2}{R^2}$ .......... (ii)
Dividing equation (i) and (ii), we get
$\frac{E_f}{G_f} = \frac{9.216 \;*\; 10^{-28}}{2.976 \;*\; 10^{-63}}$
$= 3.096 \;*\; 10^{35}$
⇒ $E_f = 3.096 \;*\; 10^{35}\; G_f$
Return to Main Menu
A French Scientist, Coulomb (In 1875): First experimentally measured the force of attraction (or repulsion) between two charges. On the basis of his measurements, Coulomb enunciated a law, called Coulomb's Law .
"Two charges attract (or repel) each other with the force, which is directly proportional to the product of the magnitude of the charge and inversely proportional to the square of the distance between them."
The force is along the straight line joining them, as shown in figure below. This law is based on the inverse square law.
Let $Q_1$ and $Q_2$ be the two charges, separated by a distance $(r)$ then,
Mathematically,
$F = k.\frac{Q_1 Q_2}{r^2}$ .......... (i)
Where, $k$ is the constant of proportionality. It's value depends upon the medium between the charges. If the charges are situated in vacuum (or air) in SI Unit,
$F = \frac{1}{4 \pi \epsilon_0} \frac{Q_1 Q_2}{r^2}$ .......... (ii)
Where, $\epsilon_0$ = permittivity of free space (or vacuum) = $8.854 * 10^{-12} \frac{C^2}{N\;m^2}$.
If the two charges have the same sign, the electrostatic force between them is repulsive. If they have different signs, the electrostatic force between them is attractive.
Here is the video about Coulomb's Law.
VIDEO
Return to Main Menu