Given,
Mass of stone $(m) = 0.8\;kg$
Length of string $(r) = 0.9\;m$
Maximum tension $(T_{max}) = 600\;N$
Maximum speed $(v_{max}) = \;?$
For maximum speed at which the string will not break,
$T_{max} = \frac{m\;v^2_{max}}{r}$
$v^2_{max} = \frac{T_{max}\;r}{m} = \frac{600\;*\;0.9}{0.8} = 675$
⇒ $v = 25.98\;m/s$
∴ The maximum speed $(v_{max}) = \;25.98\;/m/s$
Return to Main menu
Mass of an object $(m) = 0.5\;kg$
Radius of horizontal circle $(r) = 1\;m$
Tension in the string $(T) = 50\;N$
Greatest number of revolution $(f) = \;?$
In case of horizontal circle, there is no maximum and minium tension. So we can write,
$T = m\; \omega^2\;r = m\;4\pi^2\;f^2\;r$
$f^2 = \frac{T}{4\;\pi^2\;m\;r}$
$f = \frac{1}{2\;\pi}\;\sqrt{\frac{T}{m\;r}} = \frac{1}{2\pi}\;\sqrt{\frac{50}{0.5\;*\;1}} = 1.6\;rev/sec$
⇒ Greatest number of revolution $(f) = \;1.6\;rev/sec$
Return to Main Menu
Mass of the bob $(m) = 200 \; gm = 0.2\;kg$
Radius of horizontal circle $(r) = 50 \; cm = 0.5\;m$
Angle of inclination with vertical $(\theta) = 30^{\circ}$
Tension in the string $(T) =\;?$
Speed of the mass $(v) = \;?$
In case of the horizontal circle, we have
(i) To balance the weight of the body, $T\;Cos\;\theta = mg$
$T = $ $\frac{m\;g}{Cos\; \theta} = \frac{0.2 \;*\;10}{Cos\;30}$ $= 2.3\;N$
Tension in the string $T = 2.3\;N$
(ii) To provide the necessary centripetal force, $T\;Sin\;\theta = $ $\frac{M\;v^2}{r}$
$v^2 = $ $ \frac{T\;Sin\;\theta \;*\;r}{m}$
$v = $ $ \sqrt{\frac{2.3 \; * \; Sin\;30\;*\;0.5}{0.2}}$ $ = 1.69\;m/s$
Speed of mass $(v) = 1.69\;m/s$
Return to Main Menu
Maximum string $(T_{max}) = 25 \; N$
Mass of the object $(m) = 500 \; gm = 0.5 \; kg$
Radius of circle $(r) = 1\;m$
Frequency $(f) = \; ?$
We have,
$T_{max} = $$\frac{mv^2}{r}$$ = m\;\omega^2\;r$ = Centripetal Force
or, $T_{max} = m\;(2\;\pi\;f)^2\;r$
$25 = 0.5 * 4\pi^2 * f^2 * 1$
$f^2 = $$\frac{25}{0.5\; * \;4\; *\; \pi^2 \;*\; 1}$$ = 1.266$ rev/sec
$f = 1.125\;$ rev/sec
⇒ $f = 1.125 * 60\;rpm = 67.5\;rpm$
Return to Main Menu