Showing posts with label
Electric Field & Electric Potential.
Show all posts
Showing posts with label
Electric Field & Electric Potential.
Show all posts
Given,
Mass of electron $(m_e) = 9.1 \;* \;10^{-31}\;kg$
Charge of electron $(e) = 1.6 * 10^{-19}$
Electric field intensity $(E) = 1.2 * 10^4\;V/m$
Distance covered $(s) = 1\;cm = 100^{-2}\;m$
Time taken (t) = ?
We have,
$F = eE$
or, ma = eE
or, $a = $$\frac{eE}{m} = \frac{1.6 * 10^{-19} \;*\; 1.2 \;*\; 10^4}{9.1 \;*\; 10^{-31}}$$ = 2.1 * 10^{15}\;m/s^2$
Now we have to calculate,
$S = ut \;+\; $$\frac{1}{2}$$at^2$
$S = 0 \;+\; $$\frac{1}{2}$$at^2$ [∵ $u = 0 \; m/s$]
$0.01 = $$\frac{1}{2}$$ \;*\; 2.1 \;*\; 10^{15} \;*\; t^2$
⇒ $t = 3.1 \;*\; 10^{-9}\;Sec $
Given,
Mass of the alpha particle = $6.68\;*\;10^{-27}\;kg$
Charge of the alpha particle = $3.2 * 10^{-19}\;C$
We have,
Electrostatic Force $(E_f) = $$\frac{1}{4\pi \epsilon_0} \frac{q_1\;q_2}{R^2}$
Electrostatic Force $(E_f) = 9*10^9 * $$\frac{q^2}{R^2}$ = $9*10^9 * $$\frac{(3.2 * 10^{-19})^2}{R^2}$ ......... (i)
Gravitational force $(G_f) = G $$\frac{M_1\;M_2}{R^2}$
Gravitational force $(G_f) = 6.67\;*\;10^{-11} $$\frac{(6.68*10^{-27})^2}{R^2}$ .......... (ii)
Dividing equation (i) and (ii), we get
$\frac{E_f}{G_f} = \frac{9.216 \;*\; 10^{-28}}{2.976 \;*\; 10^{-63}}$
$= 3.096 \;*\; 10^{35}$
⇒ $E_f = 3.096 \;*\; 10^{35}\; G_f$
Return to Main Menu