The average power absorbed by each light bulb is directly proportional to the amount of light it emits.
Case I:
Let $R_1 = R_2 = R_3 = R_4 = R_5 = 100\; \Omega$
Then total resistance $R = 500\;\Omega$
Now, Power $(P_1) = $$\frac{V^2}{R} = \frac{(220)^2}{500}$$ = 96.8\;\;Watt$
Case II:
Let $R_1 = R_2 = R_3 = R_4 = 100\; \Omega$
Then total resistance $R = 400\;\Omega$
Now, Power $(P_1) = $$\frac{V^2}{R} = \frac{(220)^2}{400}$$ = 121\;\;Watt$
Since $P_2 > P_1$
Therefore the second case with four light bulbs draws more power and will produce more light.