Showing posts with label
Time period of the Revolution.
Show all posts
Showing posts with label
Time period of the Revolution.
Show all posts
Given,
T = 27 days 8 hours = (27 * 24 + 8) hours = 656 hours = 2361600 Sec
Radius of Earth (R) = $6.36 * 10^6\;m$
Radius of orbit $(r) = 60.1 * R = 60.1 * 6.36 * 10^6$
Value of $g$ = ?
$T = $ $ \frac{2\;\pi\;r}{R} \sqrt{ \frac{r}{g}}$
By Solving,
$g$ = $\frac{4\; \pi^2\;r^3}{T^2 \; R^2}$ = $\frac{4 \; \pi^2 \; * \; (60.1)^3 \; R^3}{T^2 \; R^2}$ = $\frac{4 \; \pi^2 \; * \; (60.1)^3 \; * \; 6.36\; * 10^6}{2361600}$ = $9.77 \; m/s^2$
∴ The required value of $g$ from the motion of the moon is $9.8\;m/s^2$
Return to Main Menu
Given,
Radius of the orbit $(r) = 7880\;km = 7880\; * \;10^3\;m$
Height $(h) = 1500\;km = 1500\;*\;10^3\;m$
Period of revolution $(T) = \;?$
Radius of earth $(R) = r - h = (7880 - 1500)\; * \; 6380\;*\;10^3\;m$
We have,
$T = 2 \pi \; * \; \sqrt{ \frac{(R\;+\;h)^{3}}{(g\;*\;R)^2}}$
or, $ T = 2 \pi \; * \; \sqrt{ \frac{(6380000\;+\;1500000)^3}{9.8\;*\;(6380000)^2}} = 6955.29\;Sec = 1.91\; hrs$
∴ The time period of the revolution = $1.91\;hrs$.
Return to Main menu