In the series LCR circuit, the power delivered by the AC circuit is defined as the product of current and emf.
Mathematically,
Power ($P$) = $I * E$ .......... (i) (∵ P = I * IR = I$^2$R)The instantaneous value of current and emf are,
$\left.\begin{matrix}
I = I_0 Sin \omega t
\\
E = E_0 Sin (\omega t + \theta)
\end{matrix}\right\}$ .......... (ii)
Then,
Power (P) = $I_0$ Sin $\omega t . E_0 $ Sin $(\omega t + \theta)$
= $I_0 . E_0$ Sin $\omega t$ (Sin $\omega t$ Cos $\theta$ + Cos $\omega t$ Sin $\theta)$
= $I_0 . E_0$ (Cos $\theta$ . Sin$^2 \omega t$ + Sin$\theta$ . Cos $\omega t$ . Sin $\omega t)$
Now the small amount of work done ($dW$) is given by,
$dW = P.dt$
or, $dW = I_0 . E_0$ (Cos$\theta$ . Sin$^2 \omega t$ + Sin$\theta$ . Cos $\omega t$ . Sin $\omega t)$ .......... (iii)
Hence, the total amount of work done $(W)$ can be obtained by integrating the above equation (iii) from $0$ to $T$, then
or, $\int dW = \int_{0}^{T} I_0 . E_0$ (Cos$\theta$ . Sin$^2 \omega t$ + Sin$\theta$ . Cos $\omega t$ . Sin $\omega t) $
By Integrating,
$W = \frac{I_0 . E_0}{2} T. Cos\theta$
Therefore, the average Power $(P_{av})$ in the AC circuit is,
$P_{av} = \frac{W}{T} = \frac{I_0 . E_0}{2\;*\;T} T. Cos \theta $
$ = \frac{I_0 . E_0}{2} Cos\theta$
$ = \frac{I_0}{\sqrt{2}} * \frac{E_0}{\sqrt{2}} * Cos\theta$
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} * Cos \theta$ .......... (iv)
Here I$_{rms}$ and E$_{rms}$ are called apparent power and Cos$\theta$ is called power factor.
Special Cases:
Special Cases:
Case I: Power Consumption across R, If $\theta = 0$; Then,
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} $
Case II: Power Consumption across L, If $\theta = \frac{\pi}{2}$; Then,
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} * Cos(\frac{\pi}{2}) = 0 $
Case III: Power Consumption across C, If $\theta = \frac{-\pi}{2}$; Then,
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} Cos(\frac{-\pi}{2}) = 0 $
Case IV: Power Consumption across RL, If $\theta = \frac{R}{Z}$; Then,
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} (\frac{R}{\sqrt{X_{L}{^2} + R^2}})$
Case V: Power Consumption across RC, If $\theta = \frac{R}{Z}$; Then,
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} (\frac{R}{\sqrt{X_{C}{^2} + R^2}})$
Case VI: Power Consumption across LCR, If $\theta = \frac{R}{Z}$; Then,
$\Rightarrow$ $P_{av} = I_{rms} * E_{rms} (\frac{R}{\sqrt{{X_{L} - X_{C}){^2} + R^2}}}) $
No comments:
Post a Comment