Taking the earth to be the uniform sphere of radius $6400 \; km$, calculate the total energy needed to raise a satellite of mass $1000 \; kg$ to a height of $600 \; km$ above the ground and to set it into a circular orbit at that altitude.


Given;
Radius of earth (R) = 6400 km = 6400000 m
Mass of satellite (m) = 1000 kg
Height of satellite (h) = 600 km = 600000 m
Total Energy needed (E) = ?

Energy needed = Increase in Potential Energy + Kinetic Energy at Orbit
= $-$$\frac{G\;M\;m}{r}$$\;-\;$$\frac{-\;G\;M\;m}{R}$$\;+\;$$\frac{1}{2}$$mv^2$
= $-$$\frac{G\;M\;m}{r}$$\;-\;$$\frac{-\;G\;M\;m}{R}$$\;+\;$$\frac{1}{2}$$m$$ \frac{G\;M}{r}$                               [∵ r = R+h]

= $g\;R^2\;m[$$\frac{1}{R}$$\;-\;$$ \frac{1}{2(R+h)}$$]$     =     $g\;m[R\;-\;$$\frac{R^2}{2(R+h)}$$]$
= $1000\;*\;10\;[6400000 \;-\; $$\frac{(6400000)^2}{2(6400000 \;+\; 600000)}]$
= $3.47\;*\;10^{10}\;J$

∴ The total Energy needed (E) = $3.47\;*\;10^{10}\;J$

Return To Main Menu

No comments:

Post a Comment