(i) Using Kirchhoff's current law at point $'D'$,
Current through $R = 6 - 4 = 2\;A$
(ii) Applying Kirchhoff's voltage law in close loop ABCDA,
$E = 3 \; *\; 6 \;+\; 4\; *\; 6 = 18\; + \;24 = 42\; V$
(iii) Again, Applying Kirchhoff's voltage law in close loop AFEDA,
$E - 28 = 6 * 4 - R * 2$
$42 - 28 = 24 - 2R$
$2R = 24 - 14 = 10$
$R = 5 \; \Omega$
(iv) If the circuit is broken from point $'P'$ then,
Current$(I) = \frac{V}{R\; +\; 3} = \frac{28}{5\; + \;3}$ $ = 3.5\; A$
Return to Main Menu
No comments:
Post a Comment