"Never stop Thinking, Never stop Questioning; Never stop Growing. To be realize that everything connects to everything else!! - spl BiNal.
Given,
For $1^{st}$ Condition,
Velocity $v = 16\;cm/s$
Displacement $y = 8\;cm$
$v = \omega \sqrt{r^2 - y^2}$
$16 = \omega \sqrt{r^2 - 64}$ .......... (i)
Amplitude of the motion $r = \;?$
For $2^{nd}$ Condition,
Velocity $v = 8\;cm/s$
Displacement $y = 12\;cm$
$8 = \omega \sqrt{r^2 - 144}$ .......... (ii)
From equation (i) and (ii), we get
$ \frac{16}{8} = \frac {\sqrt{r^2 - y^2}}{\sqrt{r^2 - 64}}$
or, $4 = $ $\frac{r^2\; - \;64}{r^2 \; - \;144}$
or, $4\;r^2 - 144 \;*\;4 = r^2 \;-\;64$
or, $3\;r^2 = 512$
or, $r^2 = 170.66\;cm$
or, $r = 13.06\;cm$
∴The amplitude of the motion is $13.06\;cm$
Return to Main Menu
No comments:
Post a Comment