A stone with mass $0.8 \; kg$ is attached to one end of a string $0.9 \; m$ long. The string will break if its tension exceeds $600 \; N$. The stone is whirled in a horizontal circle, the other end of the string remains fixed. Find the maximum speed, the stone can attain without breaking the string.

Given,
Mass of stone $(m) = 0.8\;kg$
Length of string $(r) = 0.9\;m$
Maximum tension $(T_{max}) = 600\;N$
Maximum speed $(v_{max}) = \;?$

For maximum speed at which the string will not break,
$T_{max} = \frac{m\;v^2_{max}}{r}$
$v^2_{max} = \frac{T_{max}\;r}{m} = \frac{600\;*\;0.9}{0.8} = 675$
⇒ $v = 25.98\;m/s$

∴ The maximum speed $(v_{max}) = \;25.98\;/m/s$
Return to  Main menu

No comments:

Post a Comment