A coin placed on a disc rotates with speed of $33 \frac{1}{3}\;rev/min$ provided that the coin is not more than $10 \; cm$ from the axis. Calculate the coefficient of static friction between the coin and the disc.

Given,
Frequency of rotation $(f) = 33 \frac{1}{3}\;rev/min = \frac{100}{3\;*\;60}\;rev/sec = 0.56\;rev/sec$
Radius $(r) = 10\;cm = 0.1\;m$
Coefficient of static friction $(\mu_s) = \;?$

When the coin just sustain on the disc, the frictional force is equal to the centripetal force,
i.e $F_s = \frac{m\;V^2}{r}$
or, $\mu_s\;R = m\; \omega^2\;r$          [∵ $F_s = \mu\;R$]

or, $\mu_s = \frac{m\;\omega^2\;r}{m\;g} = \frac{(2\;\pi\;f)^2\;r}{g}$        [∵ $R = m\;g$]
or, $\mu_s = \frac{4\;\pi^2\;(0.56)^2\;0.1}{10} = 0.123$

Coefficient of static friction $(\mu_s) = \;0.123$

Return to Main menu

No comments:

Post a Comment