Calculate the acceleration of a block sliding down a slope of $30^0$. Given: coefficient of friction is 0.25 and $g = 9.8 m/s^2$
Given,
Angle of inclination $(\theta)$ = 30°
Coefficient of Friction $(\mu)$ = 0.25
Downward Acceleration $(a)$ = ?
The downward force $= mg\;Sin\;\theta$
The frictional force = $\mu\;R = \mu\;mg\;Cos\theta$
Net downward force along the plane is,
$F = mg\;Sin\theta - \mu\;mg\;Cos\theta = mg\;(Sin\;30 - 0.25 \; *\;Cos\;30) = mg\;*\; 0.283$
Then acceleration $a$ is given by,
$F = ma$ ⇒ $a = $$\frac{F}{m}$ = $\frac{mg\;*\;0.283}{m}$ = $10 * 0.283 = 2.83 \; m/s^2$
Return to Main Menu
No comments:
Post a Comment