What would be the acceleration of a block sliding down an inclined plane that makes an angle of 45° with the horizontal if the coefficient of sliding friction between two surfaces in 0.3?

Given,

Angle of inclination $(\theta)$ = 45°
Coefficient of Friction $(\mu)$ = 0.3
Downward Acceleration $(a)$ = ?
The downward force $= mg\;Sin\;\theta$
The frictional force = $\mu\;R = \mu\;mg\;Cos\theta$
Net downward force along the plane is,

$F = mg\;Sin\theta - \mu\;mg\;Cos\theta = mg\;(Sin\;45 - 0.3\;Cos\;45) = mg\;*\; 0.495$
Then acceleration $a$ is given by,
$F = ma$     ⇒     $a = $$\frac{F}{m}$ = $\frac{mg\;*\;0.495}{m}$ = $40 * 0.495 = 4.95 \; m/s^2$

Return to Main Menu 

No comments:

Post a Comment