A $650\;KW$ power engine of a vehicle of mass $1.5 \; * \; 10^5\; kg$ is rising on an inclined plane of inclination $1$ in $100$ with a constant speed of $60\;km/hr$. Find the frictional force between the wheels of the vehicle and the plane.
Given,
Power of engine $(P) = 650\;kw = 650000\;W$
Mass of vehicle $m = 1.5 \; * \; 10^5\; kg$
Inclination $Sin\;\theta = \frac{1}{100}$
Speed of vehicle $(v) = 60\;km/hr = $$\frac{60\;*\;1000}{60\;*\;60} = \frac{50}{3}m/s$
Frictional force $(f_r) = \;?$
We have, total upwarding force $F = f_r + mg\;sin\;\theta$ ⇒ $\frac{P}{v}$$ = f_r + mg\;sin\;\theta$
No comments:
Post a Comment