Loading [MathJax]/jax/output/HTML-CSS/jax.js

E1.3 Kinematics (Equation of Motion in Straight Line):

For an object moving in a straight line, displacement, velocity, acceleration and time are taken are related by simple equation called Kinematical Equations (or equations of motion in straight line).
I. Analytical Treatment: 
a) Distance covered with Uniform Velocity:                                              s = ut 
b) Velocity of a Uniformly accelerated body after time (t):                       v = u + at 
c) Distance covered by a uniformly accelerated body in time (t):     s = ut+1/2at2 
d) Velocity of Uniformly accelerated body after covering a distance (S):  v2 - u2 = 2as 
e) Distance traveled in nth second:                          sn(th) = u+1/2a(2n1)

II. Graphical Treatment:
a) v = u + at 
Acceleration = slope of the velocity-time graph AB 
∴ a = BMAM = BMON = BNMNON = vut 
or, vu=at 
v=u+at     .................... (i)

b) s=ut+12at2
Acceleration = slope of the velocity-time graph AB 
∴ a = BMAMBMtBM = at 
Now, distance traveled by object in time t, 
s = area of trapezium OABN = area of rectangle OAMN + area of triangle ABM 
   = OA * ON + 12OB * AM = ut + 12at * t = ut + 12at2 
Therefore, s = ut + 12at2            .............. (ii)

c) v2 = u2 + 2as 
From the velocity - time graph: 
s = area OABN 
= 12(OA+NB).AM 
= 12(OA+NB).AMBM.BM 
= 12(u+v).1BM/AM.(BNMN) 
= 12(u+v)1a(vu) 
= v2u22a 
v2u2=2as        .......................... (iii)

Return to Main Menu