An object of mass $8 \; kg$ is whirled round in a vertical circle of radius $2 \; m$ with a constant speed of $6 \; m/s$. Calculate the maximum and the minimum tension in the string.

Given,

Mass of the object $(m) = 8\;kg$
Radius of the object $(r) = 2\;m$
Speed of the object $(v) = 6\;m/s$
Maximum tension $(T_{max}) = \;?$
Minimum tension $(T_{min}) = \;?$

We have,
$T_{max} = \frac{m\;v^2}{r} + m\;g = \frac{8 \; * \; 6^2}{2} + 8\;*\;10 = 224\;N$

∴ Maximum tension $(T_{max}) = \;224\;N$

$T_{min} = \frac{m\;v^2}{r} - m\;g = \frac{8 \; * \; 6^2}{2} - 8\;*\;10 = 64\;N$

∴ Minimum tension $(T_{min}) = \;64\;N$

Return to Main Menu

No comments:

Post a Comment