A mass of $1 \; kg$ is attached to the lower end of a string $1 \; m$ long whose upper end is fixed. The mass is made to rotate in a horizontal circle of radius $60 \; m$. If the circular speed of the mass is constant. Find the tension in the string and the period of motion.

Given, (need figure)
Mass of the object $(m) = 1\;kg$
Length of string $(l) = 1\;m$
Radius of circle $(r) = 60\;cm = 0.6\;m$
Tension on the string $(T) = \;?$
Period of motion $(t) = \;?$

From Figure,
$T \;Cos \theta = mg$ .......... (i)
$T \;Sin \theta = \; $$\frac{mv^{2}}{r}$ .......... (ii)
We have,

$tan \theta  = \;$$\frac{v^2}{r\;g}$ and            $Sin \theta = \;$ $ \frac{r}{l} = \frac{0.6}{1}$ $ = 0.6 $
⇒ $\theta = Sin^{-1}(0.6) = 36.87$
Now, From the relation,
$T =\;$ $ \frac{m\;*\;g}{Cos \theta} = \frac{1 \;*\;10}{Cos (36.87)}$ $ = 12.5\;N$

⇒ Tension on the string $(T) = 12.5\;N$
Again from relation,
$t = \;$$2 \pi \sqrt{\frac{l\;Cos \theta}{g}}$
$t = \; $ $2 \pi \sqrt{\frac{1 \;* \;Cos (36.87)}{10}}$ = $1.78 \;Sec$
⇒ Period of motion $(t) = 1.78 \;Sec$
Return to Main Menu

No comments:

Post a Comment